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Abstract 

Mizoguchi has very recently cast London's theory of magnetic susceptibilities 
of conjugated molecules in terms of the Coulson contour-integral formulation of 
Hückel molecular-orbital theory. Since interest in this approach has been thus 
revived, we present here a previously unpublished document, dated May 16th, 
1953, by the late Professor C.A. Coulson, FRS, in which he formulates the London 
theory in terms of his own contour-integral method. Coulson's treatment is based 
on bond-bond polarisabilities and it therefore provides an interesting parallel to 
certain aspects of the now-classic McWeeny polarisability method, advanced live 
years later. The Coulson polarisability formalism does not, however, provide for 
explicit computation of individual "ring-current" intensities, nor - since it preceded 
the experimental observations - for the direct calculation of "ring-current" 
secondary fields (and, hence, ~H-NMR chemical shifts). 

1. Introduction 

Mizoguchi [1] has very recently cast London's theory [2-7]  o(magnetic 
susceptibilities of conjugated molecules in terms of the Coulson contour-integral 
fonnulation [8] of Hückel molecular-orbital (HMO) theory [9]. As has been 
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emphasized [7(a),10(a)], the Coulson contour-integral approach [8] was much 
favoured by its originator but, perhaps because of its rather esoteric nature, has 
been less generally and less enthusiasticaUy adopted by other authors. Now it has 
been pointed out in a footnote on page 323 of [7] (and, earlier, elsewhere [10(a)]) 
thät, in a previously unpublished document dated May 16th, 1953 and entitled 
Diamagnetic Anisotropy of Aromätics, the late Professor C.A. Coulson, FRS, 
formulated the London theory [ 2 - 4 ]  in terms ofhis own contour-integral approach [8]. 
This document was discovered by one of us (R.B.M.) in 1974 when helping Mrs. Eileen 
Coulson to sott and evaluate her late husband's scientific papers; it was then deposited 
in file B38.6 of the Coulson material in the Contemporary Scientific Archives 
Collection of the Bodleian Library, University of Oxford. Mrs. Coulson very kindly 
allowed a Xerox copy of this item to be made, before the papers were deposited in 
the Bodleian. Since then, although the existence of this work has been mentioned 
by one of us in a thesis [lO(a)] and in a review of the "ring-current" effect [7(a)], 
the document itself has, until now, remained unpublished. 

The recent work of Mizoguchi [1] has, however, revived interest in the 
Coulson contour-integral approach to magnetic susceptibilities in conjugated molecules 
and, in order to demonstrate Coulson's independent (albeit private) contributions 
to the development of these ideas, thirty-five years ago, we take the opportunity to 
publish here bis 1953 manuscript in its entirety. As has already been pointed out in 
the only previous public references to this work [10(a),7(a)], the document also 
advances an alternative approach, within the framework of the HMO method and the 
London approximations, for calculating overall magnetic susceptibilities of conjugated 
molecules. As will be seen, Coulson's treatment is based on bond-bond polarisäbilities 
[11,6] and it therefore provides an interesting parallel to certain aspects of the now- 
classic [7(b)] McWeeny polarisability method,  proposed five years later [6]; the 
Coulson polarisability formalism, as presented, does not,  however, provide for explicit 
computation of individual "ring-current" intensities, as McWeeny's method [6] and 
that of Pople [5] do, nor, of course - since it preceded the experimental observa- 
tions [12,13] - for the direct calculation of "ring-current" secondary fields (and, 
hence, 1H-NMR chemical shifts [10,7] ). 

2. T h e  C o u l s o n  m a n u s c r i p t  

We now present, verbatim, Coulson's hand-written manuscript on the magnetic 
properties of conjugated molecules in the presence of an external magnetic field. 
Because of the historical nature of this account, we have left it entirely in terms of 
the unrationalised CGS system ofmagnetic units which Coulson and other contemporary 
authors used, and have thus resisted the temptation to modernise the document to 
make it conform with the so-called Système International, which is now becoming 
more widespread. Accordingly, Coulson here begins his treatment by considering the 
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secular equations appropriate to the situation in which the planar, conjugated mole- 
cule under study is immersed in a constant,  external magnetic field H, of magnitude H, 
which is assumed to be normal to the plane of the molecule. Having thus set the 
scene, we now allow Professor Coulson himself to continue the story, by quoting him 
directly. 

Diamagnetic Anisotropy of  Aromatics, May 16th, 1953. 

According to London [4],  the secular equations are now 

A ( e )  - 

Ot I - -  E 3 1 2  3 1 3  - " • 3 1 n  

3 2 1  Og2 - -  • 32;3  " • " 3 2 r /  

Bn l  ~n2  ~n3  • ' " O ~ n -  é 

= 0 ,  (1) 

where 

B12 = :~2 e z~: '2  (2) 

The exponential arises from gauge invariance, as is shown, inter alia, in the second 
appendix in [14]. 
Also*, 

eH 
f12 = ~-c $12,  (3) 

where 

$12 = area of  triangle from origin to points 1 and 2, taken in the correct 

order - i.e., f2x = - f12.  

THEOREM 1 

The roots of eq. (1) are independent of  the origin of coordinates. Consider, 
for simplicity, the case of  four atoms only. 

* (Explanatory note by B.O'L. and R.BM.): In eq. (3),and throughout, - e  (= -1.6021() × 10 -19 C, 
in SI units) is the chärge on the electron, h (=6.6256 Xl0 -34 Js) is Planck's constant, and 
c (=2.997925 Xl0 « ms -1 ) is the speed of light in vacuo. 
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z~(~) 

o q  - e /3~2 e 2~iL2 /3~3 e 2rriL3 /3~4 e 2rri:'' 

B~l e2rriß~ c~ 2 - e /3~3 e2rriß~ /3~4 e2rrif=4 

031 e2wif31 /332 e2'nifa2 oe3 -- ~ /3~4 e2"ni ./"34 

041 e 2ni£« Õä2 e2rri'f42 /343 e 2rri2'43 o~ 4 - e 

(4) 

Divide column 2 by e 2~iL= and multiply row 2 by the same. Repeat the process with 
column and row 3 using e 2friß ~ , and column and row 4 using e 2~riL4 . 

Recognising that/3iß. =/3~~., we may write the result of  this as: 

A ( c )  - 

« 1  - -  « /312 /313 /314 

/3~2 et2 - e /3~3e 2rri(f2:) ' ]3+flO /324e 2rr i ( f2: f l '+f: - )  

/373 ~~3 e27ri(-f~3-f ' :+f '~) 0~3 - ¢ /3;4 e2rri(f3«-~«*f'~) 

B14 /324 e27ri(-f24-f12+f14) /334 e27ri(-f:4-f13+f14) 0¢4 -- é 

cq - e ~~: /37~ /3~« 

fi12 ee 2 - e /3~3e 2rriAl~3 /3~4e 2rriAl:« 

/313 /3~3e -2rriA:-3 o¢ 3 - c /3~4e 2rriAl3'~ 

BI4 ~24 e-2rriA:'4 /3~4e -27riA13' et4 - é 

, ( s )  

where A123 = (elt/h c) x area of  the triangle joining points, 1 ,2 ,3 ,  in that order. 

Proof of  this latter statement, added by B. 0 'L. and R.B.M. (cf. pp. 318 ,319 ,  eq. (5 6) 
and fig. 5 of  [7] ): 

Consider atoms 1 ,2  and 3, and the arbitrary origin O, with the cycle traversed 
in the anticlockwise direction 1 ~ 2 -+ 3 -+ 1, as defined by the arrows in fig. 1, 
where the letters K, L, M, N denote the moduli of  the area segments indicated. It 
will be recalled from earlier in Coulson's treatment that Sij is the signed (algebraical) 
area of  the triangle formed by the origin and the atoms / and /' of  the conjugated 
network,  counted positive if i ~ j is right-handed about  the upward normal through 
O, and negative otherwise. Then, 
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3 

2 

Origin 
0 

Fig. 1. 

o4 

S12 + S23 + S31 = - ( N  + K) + (K + L) + (M + N)  

= L + M  

= area of triangle joining points 1 ,2 ,3 .  

Hence, considering the quantity f12 + fz3 - f13  appearing in the exponent of the 
(2,3)-element of the first determinant in eq. (5), we have 

A~ + f~3 - Jq3 = A~ +/'23 + f31 

eH 
hc ($12 + S~3 + $31) 

eH 
= - -  × area of triangle joining points 1 , 2 , 3  

hc 

= A 123 » 

as Coulson asserts. 
We now return to Coulson's account. 

This shows that the origin of coordinates is irrelevant, since it disappears completely 
from eq. (5) and so the roots do not depend in any way upon it. As a matter of fact, 
eq. (5) is the form taken by eq. (4) when the origin is supposed to be at atom 1. 
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INEQUALITY OF/312 AND ~21 

The quantities such as /312 are complex; but since A is Hermitian, all the 
roots e are real. If we put 

Blz = 13~2 + 6/312, (6) 

then, to square form in H, 

6/312 = t312 {e 2rriß~ - 1} 

o {2friert  27r2e2H 2 } 
= ~,2 ~ $12 h2c2 S~2 

: t3~2 {21rifl~ - 27r2f~} . (7) 

We do not need to go beyond square terms since the susceptibility follows from 

1 E(H)  = E(O) - ? x H 2. (8) 

It will be noticed that 6/312 ~ 6/321. They are merely complex conjugates. This means 
that although we want to use perturbation expansions, such as those developed by 
Coulson and Longuet-Higgins [11],  we shall have to develop a slightly different 
technique from that applicable when 1312 is real and 6/312 = 6/321. 

MODES OF CALCULATION 

There are essentially four ways of proceeding: 

(i) direct solution o f  the secular determinant, as in London [3,4] ; 

(il) manipulation o f  the secular determinant in a form suitable to each particular 
symmetry type. This is a line followed by McWeeny (polyphenyls [14] and hexagonal 
symmetry type [15] ) and he uses the contour-integral method.  

2zri 2~(z) n d z ,  (9) 

with A(z) expanded in powers of 

271e 
0 -  - - S ;  

hc 
1 (S = g area of benzene); 
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(iii) 
write 

expansion of A directly, as in the work of Mayot et al. [16]. These authors 

A = A(z ,H)  = Ao(z ) + coAI(Z ) + c o 2 A 2 ( z  ) + . . .  , (10) 

where 

co = k H ,  (11) 

and is therefore proportional to H. k is a convenient constant without significance. 
Then, 

- z l n A - n  d z  ( 1 2 )  
27ri ~ 

(This is eq. (44) of [11] .) In (9) and (12), n = number of carbon atoms, and all oe's 
are supposed equal (to zero). We suppose now that all orbitals are doubly filled. (Odd 
electrons can be treated separately.) Thus, 

E(H)-E(O)= 2rri2 )~ 

-~~ 
2rri 

2rri 

~(~o) z ~zz in dz 

z -~z in l + c o  A-õ + 002 - -  + ' ' "  dz 
Ao 

~/~1 (~~ ~~~ / 
z _~z c o ~ o  +co2 ~o  2A~B "'" dz' (13) 

Now changing the sign of H is equivalent simply to interchanging rows and columns 
in eq. (1) and hence A is unaltered. Therefore, A(z,H) is an eren function of H. 
Hence, 

Ax (z) - 0. (14) 

This means that we can write 

2f 0{ 
E ( H ) - E ( O ) -  2rri z "~-z 602 

E(H)= E(O)+ 2CO2~~ 3---~-(A2~ 
2ni z 0z \ A o  ] 

A 2 ! 
dz 

Ao . . [  

dz + higher powers of H. 

Hence, 



330 B. O'Leary, R.B. Mallion, C.A. Coulson's work  on magnetic susceptibility 

4~=~ d «~o) X = -  2rri z ~ dz.  (15) 

That is, 

X _ 4& IzA2(O 7 + 
2rri L/'o(Z) Jround 

contour 
+ o o  

= 0+  4k2 f A2(iY) 
%(i),) 

4k2 f A2(Z) 
2rri zS0(z ) 

2fr 

dz 

dy . (16) 

The above equation is effectively expression (9) of [16]. It could, of course, also be 
obtained from the alternative expansion of the energy given in eq. (44) of [11 ] • 

+ O C  

E ( H ) - E ( 0 )  = 1 I {(iy A___£' n ) -  (iy A0 I'l)} 
A 2x o 

• o + 6°2 A~ A o 
= 1 13' dy 

rr + co2 A 2 A0 
- - 0 0  

+ o ¢ »  

1 I m 71" 
- - O O  

(0,9 2 t 2 ~ 1 A 0 A 2 - co A 2 A 0 . . 

iy A--~ + co --) A ö A 7 7 7. dy 

dy  

E ( H )  - E(O) - 

X _ 

t I 

w2n J iv. ~°B2 -2~2~° 
_~ ~o 

dy + higher powers of H. 

+ o o  

I ' 
2k 2 A o A' 2 - A 2 A o 

rr iy 2 
~o - - O , O  

dy 

+ o o  2k2~/iyd~ ~~) 
- - O O  

dy 

+ o o  

2k2 f A2(iY) 
rr A 0 (iy) dy , 

- - O O  

(17) 
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which is just eq. (16) again. Neither of these proofs is the same as that used by Mayot 
et at. [16] ,who worked from eq. (10): 

A = lX(z ,H)  = ixo(Z) + coA 1(z) + co2A2(z) + . , .  

= ixo(Z) + o:2A2(z) + . . .  since Aa(z ) - 0. 

This means that the roots are 

z i (H ) = zi(O ) 
co2 A2(z ~) 

t ixo(Zi) 
+ . . . .  (18) 

Whence, 

e i ( H )  - e i ( O )  - 
oo2 A2(e i) 

ix0(ei) 
(19) 

So, 

ix2 (q)  
E ( H )  - E(0)  = - 2002 t 

occupied A 0 @i ) 

2c°a ~ ixz(z) 

2rri Ao(z ) 
dz  , 

which is merely eq. ( i6)  all over again. The major objection to this is that it requires 
an explicit expansion of ix in powers of H. And, except when there is symmetry, this 
is not a very easy matter to obtain. For this reason we put forward method (iv): 

(iv) The new method 

Let us work in terms of the 83~s defined in eqs. (6) and (7). Then, 

5 E =  
bonds 

aE 63,. s + a/3s---7 

bonds 
[~ 2 E 32E 

(sg.~) 2 + 2 ~ g s ~ , .  ] 8~r, St~,r + ~ (St3sr) 2 
a 3 s ~  
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+ 

adjacent 
bonds 

a2E O2E 
~3rs ~ ~3St + (~ ~3st ¢~ rist 

õ2E O2E q 
6/3~sS/3ts + 8/3s~6/3ts [ 

+ ~/3rsÕBt s ÕBsrÕ/3ts J 

[ 02 E 8/3rsS/3tu + O2E 8~3stößt u • + ] 
non-contiguous O/3rsO/3tu Oßs"~/3tu . . . . .  

bonds 

+ higher powers of  the 6/3. (20) 

In this expansion, it has been assumed that there are no triangles of bonds. This is 
a trivial restriction and we could easily add an appropriate extra term if there were 
such. 

Before we can go further,  we need expressions for 

OE 02E O2E 
and 

õ/3rs' O(3~sõBst õ/3,.«õ/3t~ 

These will necessarily be different from the corresponding expressions in [11], 

though,  when all the /3's are real, so that  ~3rs = ~3st, we should have simple relations 
between them all. Out analysis hefe follows closely the analysis in [11]. 

Thus, let e be a root of  &(e, ~3rs) = 0. Then, 

=o 
(21) 

where we must now be careful to distinguish* Ar, s and A~r. These are complex 
conjugates of  each other. It will be noticed that a factor of  2 is missing in eq. (21) 
as compared with eq. (32) of  [11]. This is to be expected, since, in the latter, we are 
really concerned with 

*Explanatory note by B.O'L. and R.B.M: &r,s means the determinant & with the rth row and 
the sth column deleted. 
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OE ~E 
+ - -  

and then we put [3rs = ~sr so that Ar, s = As ,  r .  

By addition of the set of relations (21 ) we have: 

~E 

~~rs 
- ( - 1 )  r + s + l  2 

o c c u p i e d  
roo t s  

A r ,  s 
A' (22) 

2 ( _ l ) r + s + l  ~ Ar, s(Z) 
2rri A(z) d z .  (23) 

When we put all the [Jrs real in this latter integral, as is required when we substitute 
into eq. (20), we see, from eq. (35) of [11],  that 

( ~~-~~,)H --o --p~s. 
(24) 

But when dealing with second-order derivatives we must not put H = 0 until the end; 
so we must proceed from eq. (23): 

32E : 2 ( - 1 )  r+s+l [ Ar, s(z) 

0BrZs 21ri ] '  A2(z) 
( _ l ) r +  «+1 Ar, s(Z ) dz 

- d z .  ( 2 5 )  
2rri 

When we put H = 0, and compare with eq. (57) of [11], this gives 

[ a=Æ ] = = { a=E'~ 
\~g~/-=o -=o 

by symmetry 

(26) 
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Similarly*, 

~)2E 

a ~s a ~,. 

- 2(-1)r+s+l f - Jr'sAs'r(-1)r+S)A2 dz 

2 ¢(Ars,,'s A",sAs, r) 
- 2~i  \ S + A2 

2 ~ Ar,.Ass 
- 2n'i ' A 2 '  d z ,  

dz 

(27) 

or, using Jacobi relations (see eq. (56) of  [11] ): 

A,Ars, r s = A~;rAs, s - A~;sAs, r • 

We can verify that eqs. (27) and (25) fit, for,  on putt ing H = 0, we get: 

32E 32E ~ 2 f A2r, s+A,,rAs, s 
3[d2s + 8 / 3 ~ 3 - ' ~ = r ) / _ / : o  = 2rri A2 dz 

= rr,.ar s by eq. (63) o f  [11] .  (28) 

This is just what should have been expected.  Hence, 

o " "  

(29) 

Further ,  

O2E _2(-1)r+s+l~(Arss t ( -1)  s+t A,;sAs, t(-1)s+t ) 
3~rs3t3st 2rri \ ' ~- - A2 dz,  (30) 

and it is supposed, for convenience,  that r < s < t. Hence, 

*Explanatory note by B.O'L. and R,B.M.: Ars, tu means that the rows r and s, together with the 
columns t and u, have been removed from the determinant A. It is also supposed, where necessary 
in this notation, that r < s, t < u [11]. 
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~2 E _ 2 (_ l ) r+ t+x  ~ A.Ars, s t -  Ar, sAs, t 

õ {Jrs ~ {3st 2 zri J" A 2 
dz 

2 ( - 1 ) r + t  ~ Ar ' tAs s  
27ri Az ' dz , (31) 

or, using the Jacobi relation given in eq. (56) of [11], with the form 

A.  Ars, s t = Ar, sAs, t - A,;tAs, s . 

We can put this in the form 

~{3~-~-~3st]/_z : ° = rr,'s,s~- n~t,s 

since, from eq. (61) of [11], we have 

(32) 

(33) 

= (_ l ) r+  t 2 ~( Ar, tAs, s + Ar, sAs, t 
f f  r s, s t  2zri ]~ A2 dz (34) 

and, from eq. (59) of [11], 

= ( _ l ) r + t  2 ~ Ar, sAt, s 
7Trt, s 2 fr---il J" A2 dz (35) 

At, s = As, t when H = 0. 

~(Jsr~(Jst - OBst 2~i  ~ s t  az 

and 

2(-1)~+ s+l ~ A s t  
2rri A z ( -1)s+ tAs ' tdz  

_ 2 ( - 1 )  r+t  [ A s r A s t  
27ri ]) 'A2 ' dz ; (36) 
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An d 

( ~2 E !~, 
~~s~s t  = ° = Gt, s , 

ffomeq.(59) of [11]. 

82E _ 2(-1) '+s+x ~ A';s(-1)r+s 
Oß,.s~[3ts 2rri - &2 At, s dz 

(37) 

2 ( _ l ) r + t  ,~ Ar, sAt, s 
2 ~ri f A 2 

dz 

And 

= 7rrt, s , as before. 

32E _ ~ {2(-1)r+s+~ ~ As~ } 
3fls,.3~t s 3Ôrs 2rri ~ dz 

2 ( -1 )  r+s+l 

2~i 
B (Asts , . ( -1)r+s+l  » , 

(38) 

Bs,,As, r(_l)S, t )  
A2 dz 

But, 

so that 

2 ( -1 )  r+t 

2~ri 
B A'Ast, s ,. + &s, rAs, t 

B2 

z2X. As t ,  s r = AS,  SZBt, r - - A s ,  r a t ,  s , 

dz.  (39) 

(40) 

b/37/3ts - 2ni A2 dz 
= 0  

= 7rrs, s t -- 7rrL s 

( õ2E )H = õ~,-«O~st , asin eq.(33). 
= 0  

(41) 

(42) 

(43) 
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On the whole, we should expect that this latter equality would hold. Also that 

B 2 E ~2 E 

õ G o &  + õ~~~õ&/ù = o 
7rrs, s t -- Irrt, s + Irrt, s = 7rrs, s t , (44) 

which is eminently reasonable, since the left-hand side of eq. (44) may be written as: 

+ - + Prs 

= n,.s, st when H = 0. (45) 

Lastly, 

32 E 2 ( _ l ) r  s+l ( - 1 )  t+uA, . ts  u dir, s ( - 1 )  t+ 
_ , t,u 

Ô3rs 33tu 2 7ri "~ - A 2 

in the case where r < t, s < u, 

dz 

2 ( - 1 )  r+s+t+u+l  [ A ' A r t ,  su - A . s A t u  

2rri ~ A2 ' ' dz 

2 ( - 1 ) ' - + s + t + u  .~ AX,.uAst 
= 2rri J~ 'A2 ' dz . (46) 

This does not go too weil, since by itself it is not expressible in terms of the various 
functions (polarisabilities) used in [11]. But it will probably help to combine it with 

~2E/~ßrsößut .  

32E _ 2 ( - 1 )  r+s+t+u ~ A r t A s u  

3Brs 3But 2 ni 'A2 ' dz , (47) 

in the case where r < u, s < t. 

Whence, ( ~2 E 

~1 t~ rs a fi tu 
= rrrs, t u ,  f r o m e q . ( 6 1 ) o f [ l l ] .  (48) 

0 
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Also, 

Õ2E _ O2E 

~~rs~~tu  Õ~s"~{JUt/all at H = 0 

Combining all these various bits: 

bonds 

from eq. (46). ( 4 9 )  

1 
+ 2  bo~nds gr, s ( (~~rs )  2 + ((~/~sr) 2) +bo~nds(grs, rs -- Trr, s) ~~rs~[Jsr 

+ Z (~r«st - ~,,~)(sg.ss~«, + 8~ù.8~, s) 
adjacent bonds ' 

rs, st 

L rr,.t,s(6fi«,613st + ~5g.«6/3t«) 
adjacent bonds 

rs, s t  

pairs of non-contiguous 
bonds rS, tu 

[ O2E 8t3, s6fitu + 2 02E 
2 öfirs~13tu bl3rsaßut 

+ 

So, to terms of square degree in H: 

L" = boù~Z Prs ~,.s ( 4~r Ls)  + ~ bon«s 

+ Z ( ~ r « , . -  2 2  o 2  7fr, s) 47r f;s([3rs) 
bonds 

o 2 2 2 
2zrr, s(/3,s) (-47r J~s) 

(so) 

Z 
adjacent bonds 

rs, s t  

+ Z 2 o o ~,.,:(sTr g:«fr/st)  
adjacent bonds 

rs, st { ~2 E 
+ pairs of Z b o n «  2(-4rr2~°rs~tu;sftu) 3(3r«õfitu 

rs, tu 
with no common 

atoms 

O2E } " 

~~r«~t3ut 
(51) 



B. 0 Zeary, R.B. Mallion, CA. Coulson's work on magnetic susceptibility 339 

In eq. (5I), the contents of  the curly brackets may, from eqs. (46) and (47), be 
written as 

2 ( _ l ) r + s + t + u  [ Ar, uAs, t - A r t A s u  
27ri ~ A2 ' ' dz , 

which, from eq. (56) of [11], is 

2(-1)r+s+t+u+12rri ~ Ars'tUA d z .  

Whence, from the above , with eqs. (8) and (3): 

h2c 2 
2 - 7  X = ~-~ 4rr2 Prs[J,.sSr 2 + Z 4rr2 [32s 7rr, sSr 2 

bonds bonds 

+ Z 2 2 2 4rr 3rsSrs(rr,;s- rrrs, rs) 
bonds 

+ 
adjacent bonds 

87r 2 ~ 3,t(~r~,,~ - ~r~,,,)s~, S,, - 8~r 2 ~ ,  ~, tSr ,  Ssr, . t ,  ~ 
- ' - "  =-g 
=0 

+ 
pairs of non- 

adjacent bonds 
rs, tU 

tU (s2) 

where 

2 ( - 1 ) r + s + t + u + 1  ~ Arstu 
rrrs - 2 rri A dz. (53) 

In the case of alternant hydrocarbons: 

2h2c2 2 2 

4 2e2 x = bondsZ + + ("r,s - 

+ Z 23rs3strr,.s, stSrsSst + Z 
adjacent non-adjacent 
bonds bonds 

m (54) 2[3rs 3tu Srs Sn, rrrs , 

*In the derivation that follows, Coulson noted that ~rr~s = aPrt/aa s is zero tbr pairs of adjacent 
bonds rs and st. 
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u s{P~'er' + (2ù,~- ù~,,r,)<}Sr ~, 

+ Z 2&&~,~.«,s~,s,~ + Z 
adjacent non-adjaeent 
bonds bonds 

~" (55) 2~~« &,  s~« s~, rr~, . 

As an afterthought in these notes, Coulson roughly outlined an alternative 
route to eq. (55) which, in some ways, he considered simpler as a method. However, 
he found this approach somewhat unsatisfactory in view of the non-vanishing of the 
majority of the terms involved and the need to evaluate too many integrals. Accord- 
ingly, his definitive treatment is the one presented here. 

3. Conclusion and comparison with recent work 

In conclusion, it might be useful if we were to set Coulson's 1953 contribu- 
tions in the context of subsequent and, in particular, modern developments. The 
connection between Coulson's work and that of McWeeny [6] was outlined in 
section 1. Here, we note that, in the treatment that we have presented in this paper, 
Coulson concentrates on summations over bonds - not  over circuits or rings, as 
McWeeny [6,7(b),17,18] and Mizoguctü [1] do. The latter author, expanding on bis 
previous work [ 1 9 - 2 1 ] ,  takes [1] the established formula (eq. (13) of ref. [17]) 
for the bond current that arises in McWeeny's method and writes the quantities 
(bond orders and imaginary bond-bond polarisabilities*) on the right-hand side of this 
equation in the language of the Coulson contour-integral formalism [8] ; he does this 
~,ia polynomial expressions (obtained earlier in his paper [1]) for (a) the sum of the 
bond order of a given bond and the imaginary self bond-bond polarisability* for that" 
bond, and (b) the mutual, imaginary bond-bond polarisability* for two distinct bonds. 
By these means, Mizoguchi shows [1] that what he calls the "driving force" for the 
current in a particular bond is the presence of the several circuits that contain that 
bond. (In this sense, Mizoguchi's method has echoes of previous approaches invoking 
the idea of 'conjugation circuits' [22-31]  . ) In  his treatment [1], Mizoguchi also 
investigates the dependence of imaginary bond-bond polarisabilities on molecular 
topology and presents certain connections and relations amongst imaginary bond- 
bond polarisabilities and bond orders, similar to some independently arrived at by 
one of the present authors and Haigh [10(b),32]. It was the work of Pople [5], and 
McWeeny's unitary transformation of 1958 [6,7(b),17,18,33], that explicitly intro- 

*Imaginary bond-bond polarisability is explicitly defined in the Appendix (pp. 446,447) of 
ref. [18]. Its relation to the real bond-bond polarisability (defined by Coulson and Longuet- 
Higgins [11]) is discussed in detail on p. 314 of ref. [6] and on p. 322 of ref. [7]. 
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duced the chemically intuitive idea of individual 'rings' into London's Gauge-Invariant 
LCAO-MO method [ 2 - 4 ] ,  and it is not surprising, therefore, that Coulson's 1953 
manuscript reported here deals solely with summations over bonds; it is, however, 
important to end this account by emphasizing that the formalisms of London [ 2 - 4 ] ,  
Pople [5], McWeeny [6,7(b),17,18] and Mizoguchi [1] - as well as Coulson's 
approach, detailed hefe - will all give entirely equivalent numerical results when 
applied, as is the custom, to evaluate the ratio of the London ("ring-current") magnetic- 
susceptibility of a given conjugated molecule to the corresponding quantity calculated, 
by the same method, for benzene. This is because all these methods (a) are based on 
a simple HMO wave function, (b) invoke the so-called 'London Approximations' [7(b)], 
and (c) make the same assumptions about molecular geometry. 
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